Method of determining nanoparticle core weight.

نویسندگان

  • Fred Reynolds
  • Terry O'loughlin
  • Ralph Weissleder
  • Lee Josephson
چکیده

Polymer-coated metal or metal oxide nanoparticles have a variety of uses in industry, biological research, and medicine. Characterization of nanoparticles often includes determination of the dimensions of the electron-dense core by transmission electron microscopy (TEM), with the weight of the core determined from core volume and core density. However, TEM is labor intensive, has a long turnaround time, and uses equipment that is sometimes not readily available. Here we present an alternative method for determining the weight of nanoparticle cores termed the viscosity/light scattering method, which uses (i) measurements of viscosity over a wide concentration range to obtain the partial specific volume, (ii) measurements of particle diameter by light scattering, to obtain the volume of an individual particle, and (iii) the concentration of nanoparticles (w/v). We have applied this method to determine the weights of nanoparticle cores (iron of amino-CLIO and ferritin), the weights of globular proteins (molecular weight of IgG and albumin), and the weight of polystyrene microspheres. The viscosity/light scattering method is nondestructive of the sample and can be performed with a variety of materials on a routine basis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a charge-perturbed particle-in-a-sphere model for nanoparticle electronic structure.

The complex surface structure of gold-thiolate nanoparticles is known to affect the calculated density functional theory (DFT) excitation spectra. However, as the nanoparticle size increases, it becomes impractical to calculate the excitation spectrum using DFT. In this study, a new method is developed to determine the energy levels of the thiolate-protected gold nanoparticles [Au(25)(SR)(18)](...

متن کامل

Providing an Analytical Model in Determining Nanofluids

The influence of temperature, mean nanoparticle size and the nanoparticle concentration on the dynamic viscosities of nanofluids are investigated in an analytical method followed by introduction of modified equations for calculating the nanofluids’ viscosities. A new correlation is developed for effective viscosity based on the previous model where the Brownian movement of the nanoparticles is co...

متن کامل

Multi-step Coating of Monodisperse Silica Spheres by Titania Nanoparticles Base on Electrostatic Attraction Strategy

TiO2-SiO2 core-shell particles include of monodisperse silica core and nanostructured titania shell were synthesized by a multi-step coating process. The monodisperse silica spheres were synthesized by Stöber method and titania shell was obtained of a colloidal sol prepared by a hydrolysis–condensation reaction. The titania sol was deposited on monodisperse silica spheres by a multi-step coatin...

متن کامل

Enhancement of radio sensitization by gold-silica shell- core nanoparticle in MCF7 breast cancer cells

  Introduction: In the present study, we investigated the role of gold-silica shell-core nanoparticle in megavoltage irradiation of MCF7 breast cancer cells.   Materials and Methods: gold-silicon oxide shell-core nanoparticles (NPs) were obtained by conjugation of gold nanoparticle with amine or thiol functionalized silica nanoparticles (AuN@SiO2 and AuS@SiO...

متن کامل

Determining the optimal conditions for calcium titanate nanoparticles synthesized via mechanical alloying method

In this research, calcium titanate nanoparticles have been synthesized via mechanical alloying (MA). By changing the parameters of mechanical alloying, optimal conditions for synthesis of this compound was determined. For synthesis of this compound, a mixture of calcium hydroxide and titanium dioxide, rotation speed of 250 rpm and differnet ball to powder weight ratio was used. Phase investigat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 77 3  شماره 

صفحات  -

تاریخ انتشار 2005